

Trade-based Asset Model for Combinatorial Prediction Markets

Wei Sun, Kathryn B. Laskey, Charles Twardy, Robin Hanson, George Mason University Brandon Goldfedder, Gold Brand Software

Combinatorial Prediction Markets

- Bayesian Networks (BN) represents the joint distribution in factorized form
- ▶ Logarithmic market scoring rule to update user's asset

$$a_{\mathbf{v}}^{u} + b \log \frac{x(t|\mathbf{H} = \mathbf{h})}{p(t|\mathbf{H} = \mathbf{h})}$$

- ► TASK-1 (market): Probability update for maintaining market distribution
- Solution: junction tree inference
- ► TASK-2 (user): asset management for calculating (1) expected asset; (2) minimum asset, a.k.a. cash
- Solution: trade-based asset model

Welcome to sign up! https://SciCast.org/

a prediction market for science & technology forecasting

BN-based Prediction Markets

Basic Unit – Trade Asset Block

 p_i is current probability, x_i is the edit by user

Collection of asset blocks

$$\begin{array}{ll}
x_i &= x(\mathbf{W}|T, \mathbf{U})x(T|\mathbf{U} = \mathbf{u})x(\mathbf{U} = \mathbf{u}) \\
&= p(\mathbf{W}|T, \mathbf{U})x(T|\mathbf{U} = \mathbf{u})p(\mathbf{U} = \mathbf{u})
\end{array} \Rightarrow \frac{x_i}{p_i} = \frac{x(T|\mathbf{U} = \mathbf{u})}{p(T|\mathbf{U} = \mathbf{u})}$$

Therefore:

$$a_i^1 = a_i^0 + b\log(\frac{x_i}{p_i}) = a_i^0 + b\log(\frac{x(T|\mathbf{U} = \mathbf{u})}{p(T|\mathbf{U} = \mathbf{u})}) \prec b\log(\frac{x(T|\mathbf{U} = \mathbf{u})}{p(T|\mathbf{U} = \mathbf{u})})$$

DAC (DYNAMIC ASSET CLUSTER) EXAMPLE LAZY SOLUTION: USING GLOBAL SEPARATOR

A, S₁ S₁ S₂ S₂ D, S₂, S₃ Global Separator Tree X, S₃ B, S B, S Each rectangle is an asset block.

Lazy evaluation means separator isn't built in memory.

Complexity Analysis

		Design
Name	Meaning	Values
\overline{n}	NoV involved in all open trades	10-100
k	number of asset blocks	\sqrt{n}
m	NoC in the DAC junction tree	k/2
v	NoV in the biggest asset block	8
s	NoV in the biggest clique	11
r	number of states per variable	3

• DAC

$$\mathcal{O}(kv^2 + n\log(n) + m^2 + kv + kr^s)$$

$$\sim \mathcal{O}(1200 + 10 \times 3^s)$$

Global Separator

$$\mathcal{O}(k \times v) + \mathcal{O}(k \times r^{z+v})$$

Where z is number of variables in global separator.

Experimental Setup

- Chained trades
 - ▶ Bounded clique size of 2 variables for DAC
 - ▶ Global Separator of n-2 variables
- 5 cliques with sparse trades
 - ▶ Fixed size of cliques and global separator
 - Sparse trades in cliques
 - Number of entries matter

Results

